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A	scattering	basis	motivated	by	
asymptotic	symmetries?

v Plane	wave	⇒ Highest	weight	scattering										
[arXiv:1701.00049, arXiv:1705.01027,	… S.Pasterski,	S.H.	Shao,	A.	Strominger]	

v raison	d’être: Preferred	w.r.t.	Superrotations
[arXiv:1404.4091, arXiv:1406.3312, arXiv:1502.06120 ...]	
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Motivation	from	Asymptotic	Symmetries
v Recent	studies	of	low	energy	limits	of	scattering	in	gauge	theories	led	to	
understanding	connections	between	soft	theorems,	asymptotic	symmetries,	
&	memory	effects
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Soft	Theorems																					

Memories																						Symmetries

e𝑃"
𝐽"$

v To	the	extent	that	once	one	vertex	was	
known/hypothesized	to	be	present,	the	
others	could	be	‘filled	in’		thereby	
reaffirming	the	conjecture.	



Motivation	from	Asymptotic	Symmetries
v Recast	soft	theorem	as	Ward	identity	for	‘large	gauge	transformations’	that	
act	non-trivially	on	boundary data.
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as	Fourier	mode																	
of		field	operator

𝑞&'() ⇔ 𝑞&+(+		 &					 lim0→2 ⇔∫ 𝑑𝑢	
eiq·x = e�i!u�i!r(1�q̂·x̂)
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𝑞&'() ⇔ 𝑞&+(+		 &					 lim0→2 ⇔∫ 𝑑𝑢	
eiq·x = e�i!u�i!r(1�q̂·x̂)
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𝑖7

𝑖8

𝒥7

𝒥8

v Key	point	of	the	correspondence		
soft	theorem	⟺ Ward	identity													
is	relating	momentum	space	(soft	
limit)	to	position	space		(boundary	
@	Null	Infinity)	where	ASG	is	
defined		
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𝑆; at	each	point
constant	time	slices
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massive	particles	exit	here

massless	particles	enter	here

massive	particles	enter	here

the	point	at	∞ v Key	point	of	the	correspondence		
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is	relating	momentum	space	(soft	
limit)	to	position	space		(boundary	
@	Null	Infinity)	where	ASG	is	
defined		

massless	particles	exit	here
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5/9/17 SGP@RUTGERS 9

𝑖2

𝑖7

𝑖8

𝒥7

𝒥8

BMS	1960’s

v Interested	in	set	of	diffeomorphisms	that	
preserve	class	of	asymptotically	flat	metrics,	
characterized	by	radial	fall-off	near	null	infinity



Motivation	from	Asymptotic	Symmetries
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Radiative	Data

Superrotations



Motivation	from	Asymptotic	Symmetries
v From	the	soft	theorem	⟺ Ward	identity	 perspective	the	superrotation
action	corresponds	to	the	subleading soft	graviton	theorem

v Let	us	take	a	closer	look	at	the	superrotation vector	field	near	null	infinity:

• Notice	we	have	two	copies	of	the	Witt	algebra	since	𝑌 is	any	2D	CKV
• Also,	𝑢𝜕? prefers	Rindler energy	eigenstates
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Motivation	from	Asymptotic	Symmetries
v From	the	soft	theorem	⟺ Ward	identity	 perspective	the	superrotation
action	corresponds	to	the	subleading soft	graviton	theorem

v Rather	than	using	the	subleading soft	factor	to	establish	a	4D	Ward	identity	for	
this	asymptotic	symmetry	[arXiv:1406.3312]	one can massage it to	look like a		
2D	stress	tensor	insertion [arXiv:1609.00282]	
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Motivation:	Recap
vWe’ve	highlighted	certain	aspects	of	the	soft	theorem	⟺ Ward	identity
program	relevant	to	what	we	will	do	next:

• How	to	connect	between	soft	limits	and	position	space	ASG’s

• The	superrotation asymptotic	killing	vector	fields	

• The	subleading soft	theorem	as	a	2D	stress	tensor
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Enhancement	from	Lorentz	to	Virasoro

Preferred	highest-weight	basis



Constructing	Highest-Weight	Solutions
v Start	in	arbitrary	dimensions	𝑹A,C7A [arXiv:1705.01027] then	consider	
examples	where	d=2	[arXiv:1701.00049 +	...]

vWould	like	to	see	if	possible		(and	if	so,	how)	to	go	back	and	forth	between	S-
matrix	elements	in	standard	plane	wave	versus	highest-weight bases
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𝑚 = 0
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Principal	Continuous	Series
of		SO(1,d+1)canonical	reference	

direction	when	m=0



Constructing	Highest-Weight	Solutions
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Constructing	Highest-Weight	Solutions
vUsing	that	the	Lorentz	group	SO(1,d+1)	in	𝑹A,C7A acts	as	the	conformal	group	
on	𝑹C define	the	massive	scalar	conformal	primary	wavefunction to:

• satisfy	the	(d+2)-dimensional		massive	Klein-Gordon	equation	of	mass	m:

• transform	covariantly as	a	scalar	conformal	primary	operator	in	d	dimensions	under	
an	SO(1,d+1)	transformation:
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Constructing	Highest-Weight	Solutions
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Constructing	Highest-Weight	Solutions
v The	desired	properties	are	met	by	the	convolution:
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µ
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Z
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𝑃 vInterpretation	as	bulk-to-boundary	propagation	in	
momentum	space

vHave	plane	wave	⇒ highest-weight,		what	about	
reverse?



Constructing	Highest-Weight	Solutions
v If	we	define	the	shadow	for	a	scalar	as

vThe	action	on	our	scalar	wavefunctions	shows	linear	dependence	between	
weights	Δ and	d − Δ
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Constructing	Highest-Weight	Solutions
v The	orthogonality	conditions

v Imply	we	can	go	in	the	opposite	direction	highest-weight	⇒ plane	wave	
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Constructing	Highest-Weight	Solutions
v And	we	see	that	the	Klein-Gordon	inner	product	

evaluated	between	solutions	in	our	basis	is	of	a	distributional	nature
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Massless	Highest-Weight	Solutions
vWe	have	been	using	properties	of	the	bulk-to-boundary	propagator	on	the	
momentum	space	hyperboloid	(conformal	covariance,	orthogonality,		
completeness)	to	convert	between	plane	waves	and	highest	weight	solutions.

v By	forming	the	combination	𝜔 = +
;_

we	can	further	use	the	boundary	behavior	
of	𝐺U to	explore	the	massless	analog:
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Massless	Highest-Weight	Solutions
v The	first	term	satisfies	the	desired	properties	of	a	massless	highest	weight	
solution	on	its	own.	

v It	can	be	identified	as	a	Mellin transform	of	the	energy,	in	which	the	reference	
direction	is	the	same	as	the	momentum.
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Massless	Highest-Weight	Solutions
v Photon

v Graviton
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Massless	Highest-Weight	Solutions
v The	shadow	is	linearly	independent.

v Demanding	conformal	profile	fixes	residual	gauge	transformations	but	within	
gauge	equivalence	class	can	return	to	Mellin representative.
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Amplitude	Transforms
v It	is	useful	to	point	out	that	the	above	transforms	can	be	applied	directly	to	
the	S-matrix	elements.		
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Amplitude	Transforms
v Note	that	transforming	momentum	space	
amplitudes	directly,	is	an	alternative	to	previous	
approaches	[hep-th/0303006,arXiv:1609.00732]	
towards	flat	space	holography,	which	have	looked	
at	a	foliation	of	Minkowski space	to	reproduce	
AdS/CFT,	dS/CFT	on	each	slice.
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Amplitude	Transforms
v From	[arXiv:1705.01027],	summarized	here,	we		know	that	we	can	
equivalently	consider	plane	wave	or	highest-weight	scattering	states	on	the	
principal	continuous	series.	

Ø So	the	basis	motivated	by	the	subleading soft-theorem	is	okay but	
is	it	useful?

v Look	at	d=2	examples:	

ØMassive	scalar	3pt	near-extremal decay	[arXiv:1701.00049]
ØMHV	Mellin	amplitudes
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Massive	Scalar	3pt
v For	d=2,	we	use	the	projective	coordinate	𝑤, for	the	celestial	sphere	𝐶𝑆; at	the	
boundary	of	the	lightcone from	the	origin.	𝑤 undergoes	mobius transformations	when	
the	spacetime undergoes	Lorentz	transformations	

w =
X1 + iX2

X0 +X3
w ! aw + b

cw + d

v The	highest	weight	states	now	look	like	quasi-
primaries	under	SL(2,C)

��,m

✓
⇤µ

⌫X
⌫ ;

aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

◆
= |cw + d|2���,m (Xµ;w, w̄)

𝑋



SGP@RUTGERS5/9/17 33

Massive	Scalar	3pt
v Lorentz	covariance	is	built	into	the	definition	of	the	basis.		If	non-zero/finite	4D	Lorentz	
covariance	dictates	2D-correlator	form.

v The	behavior	of	low-point	“correlation	functions”	is	strongly	dictated	by	momentum	
conservation	in	the	bulk.		Special	scattering	configurations	can	be	used	to	get	Witten	diagram-
like	results.		

2(1 + ✏)m ! m+m

Ã(wi, w̄i) =
i2

9
2⇡6��(�1+�2+�3�2

2 )�(�1+�2��3
2 )�(�1��2+�3

2 )�(��1+�2+�3
2 )

p
✏

m4�(�1)�(�2)�(�3)|w1 � w2|�1+�2��3 |w2 � w3|�2+�3��1 |w3 � w1|�3+�1��2
+O(✏)

[arXiv:1701.00049]



MHV	Mellin
vMomentum	conservation	strongly	dictates	the	form	of	low	point	Mellin amplitudes.		
If	we	think	of	correlation	functions	of	Mellin operators,	we	see	the	contact	nature	of	
the	two	point	function	already	from	the	scalar	Mellin modes:

v For	MHV	amplitudes	(and	any	theory	with	scale	invariance)	one	finds	that	the	Mellin
transformed	amplitudes	have	a	conservation-of-weight
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Z 1

0
dssi

P
�k�1 = 2⇡�(

X
�k)



MHV	Mellin
v Once	you	tell	me	the	directions	of	scattering,	the	frequencies	in	the	mellin integral	
get	fixed,	ie the	momentum	conserving	delta	functions	localize	the	frequency	integrals	
(and	then	some).		For	a	2 → 2 process	with	helicities	(− −	+	+)
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MHV	Mellin
v On-shell	+	momentum	conserving	kinematics	restrict	2 → 2 reference	
directions	to	lie	on	a	circle	within	the	celestial	sphere

vMHV	3pt	has	no	support	in	(1,3)	signature	but	can	analytically	continue	to	
(2,2)	signature	with	independent	real	coordinates
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MHV	Mellin
v One	can	then	use	a	slightly	modified	BCFW,	combined	with	Mellin and	inverse	
Mellin transforms	to	check	consistency	of	the	4	pt result.
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MHV	Mellin
v Still	much	more	singular	than	one	might	hope	to	have	if	the	superrotation-
inspired	putative	CFT2 dual	could	actually	be	manifested…		Options?

Ø Shadow

v Have	Mellin	&	Mellin	+	Shadow	as	equally	good	bases	for	scattering
Ø Give	‘standard’	non-contact	2pt	terms,	4pt	also	promising	
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MHV	Mellin
vMore	curiously,	issue	of	what	linear	combination	of	bases	to	use	connects	
back	to	soft	theorems	initiating	this	investigation

v The	mode	combination	that	decouples	in	the	soft	limit	(ie	zero	soft	factor)	is	
precisely	a	linear	combination	of	Mellin	and	Mellin+shadow	in	the	limit	where	
Im	Δ = 0.
v Also	single	helicity	basis	becomes	more	natural.
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A	scattering	basis	motivated	by	
asymptotic	symmetries?
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v	Asymptotic	symmetry	/	soft	physics	investigation	motivated	by	desire	to	
constrain	S-matrix	via	promoting	more	symmetries	as	‘physical’

v	Led	to	a	superrotation	iteration	that	hinted	at	Lorentz	→	Virasoro	+	putative	
stress	tensor	via	subleading	soft	factor

v	Find	that	the	states	preferred	by	this	action	indeed	form	a	basis	for	single	
particle	scatterers.

v	Secret	hope	for	OPE	⟷	Amplitude	recursion	relation	statement?

vIntermediate	obstacles	to	fleshing	out	the	putative	dual	seem	to	at	least	offer	
resolutions	to	some	issues	that	arose	in	the	study	of	the	soft	sector	alone.



A	Conformal	Basis	for	
Flat	Space	Amplitudes
SABRINA	GONZALEZ	PASTERSKI


